
 

 

 

T-Check in Technologies for 
Interoperability: Business Process 
Management in a Web Services Context 

 
Fabian Hueppi 
Lutz Wrage 
Grace A. Lewis 
 

September 2008 

 

TECHNICAL NOTE 
CMU/SEI-2008-TN-005 

  
Integration of Software-Intensive Systems (ISIS) Initiative 
Unlimited distribution subject to the copyright. 
 



 

This report was prepared for the 

SEI Administrative Agent 
ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2100 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 
interest of scientific and technical information exchange. 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally 
funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2008 Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 
COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and 
derivative works. 

External use. Requests for permission to reproduce this document or prepare derivative works of this document for 
external and commercial use should be addressed to the permission@sei.cmu.edu. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 
and development center. The Government of the United States has a royalty-free government-purpose license to 
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 
for government purposes pursuant to the copyright license under the clause at 252.227-7013. 

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site 
(http://www.sei.cmu.edu/publications/pubweb.html).



 

 SOFTWARE ENGINEERING INSTITUTE | i 

Table of Contents 

Abstract vii 

1  Introduction 1 
1.1  Web Services 1 
1.2  Business Processes 2 
1.3  Business Process Management 2 
1.4  Business Process Management and Web services 2 

2  BPM Specifications for Web Services 4 
2.1  Common Terms used in a BPM context 4 
2.2  Common Standards in the area of BPM 7 

2.2.1  Business Process Execution Language (BPEL) 7 
2.2.2  Business Process Modeling Notation (BPMN) 9 
2.2.3  Web Service Choreography Description Language (WS-CDL) 9 
2.2.4  XML Process Definition Language (XPDL) 9 

3  Using the T-Check Approach 10 
3.1  T-Check Context 10 
3.2  Hypotheses for this T-Check 11 
3.3  Criteria for the Hypotheses 11 

4  Designing and Implementing the Solution 12 
4.1  Defining a System Architecture Based on the T-Check Context 12 
4.2  Selecting Tools for Development and Runtime 15 
4.3  Implementing the T-Check Solution 16 
4.4  Importing THE BPEL Process into NETBeans 19 
4.5  Updating a Running BPEL Process 20 

5  Evaluation and Experience with the BPM Tools 21 
5.1  Results for Hypothesis 1 21 
5.2  Results for Hypothesis 2 22 
5.3  Results for Hypothesis 3 23 

6  Future Work 24 

7  Conclusions and Call for Response 25 

Appendix A  BPEL File for the Order Processing Application 26 

Appendix B  ActiveBPEL Deployment Descriptor 31 

References  32 

 



ii | CMU/SEI-2008-TN-005 

  



 

 SOFTWARE ENGINEERING INSTITUTE | iii 

List of Figures 

Figure 1:  Conceptual View of an Orchestration (UML Sequence Diagram) 5 

Figure 2:   Conceptual View of a Choreography (UML Sequence Diagram) 6 

Figure 3:   BPMN Diagram of the Order Processing Business Process 9 

Figure 4:   T-Check Process for Technology Evaluation 10 

Figure 5:  Notional System Architecture 12 

Figure 6:  Flow Chart of the Order Processing Business Process 14 

Figure 7:  Order Processing Activities (UML Activity Diagram) 15 

Figure 8:   Ordering Process in ActiveBPEL 17 

Figure 9:   Deployment Diagram (UML) 19 

 



iv | CMU/SEI-2008-TN-005 



 

 SOFTWARE ENGINEERING INSTITUTE | v 

List of Tables 

Table 1:   Basic BPEL Activities 7 

Table 2:  Structured BPEL Activities 8 

Table 3:   Evaluation Criteria 11 

 

  



vi | CMU/SEI-2008-TN-005 

  



 

 SOFTWARE ENGINEERING INSTITUTE | vii 

Abstract 

In Business Process Management (BPM), many technologies are available to describe, analyze, 
execute, and monitor business processes. Composition languages are one type of BPM technolo-
gy. Through the use of composition languages, business processes that are implemented through 
software and available as web services can be combined into new processes. The most popular 
language in this field is the Business Process Execution Language (BPEL). BPEL allows a user to 
declaratively combine existing services within and outside an organization to implement a full 
business process. This technical note presents the results of applying the T-Check approach in an 
initial investigation of BPEL and related technologies for the implementation of BPM. This ap-
proach involves (1) formulating hypotheses about the technology and (2) examining these hypo-
theses against specific criteria through hands-on experimentation. The outcome of this two-stage 
approach is that the hypotheses are either fully or partially sustained or refuted. In this report, 
three hypotheses are examined: (1) business process descriptions can be exchanged between dif-
ferent design tools and runtime engines; (2) the development effort for integration is reduced 
through the use of a BPM tool; and (3) business processes can be changed dynamically at runtime. 
From the T-Check investigation, the first two hypotheses are partially sustained and the last hypo-
thesis is fully sustained. 

  



viii | CMU/SEI-2008-TN-005 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 1 

1 Introduction 

Business Process Management (BPM) is an emerging field of knowledge and research at the in-
tersection between management and information technology. BPM encompasses methods, tech-
niques, and tools to design, enact, control, and analyze operational business processes involving 
humans, organizations, applications, documents, and other sources of information [Wikimedia 
2007]. The focus of this report is the use of the T-Check approach for the examination of some 
technologies and standards that are currently being used to implement BPM in a web services 
context. 

A T-CheckSM investigation is a simple and cost-efficient way to understand what a technology can 
and cannot do in a specific context [Lewis 2005]. Specifically, this T-Check investigation focuses 
on finding initial answers to the following questions: 

1. What standards are used to enable BPM with Web services? 

2. Can artifacts adhering to these standards be exchanged easily between different BPM tools? 

3. Can the development effort for BPM solutions be reduced by using tools that support these 
standards? 

In the rest of this section, we briefly introduce the relevant technologies. In section 2, we describe 
BPM concepts and standards. Section 3 presents how we evaluate BPM technology; section 4 
describes our sample implementation; and section 5 presents the evaluation results. We end the 
document with an outlook on future work and conclusions about the investigation in the final two 
sections. 

1.1 WEB SERVICES 

A web service has been defined by the World Wide Web consortium (W3C) as follows [W3C 
2004]: 

… a software system designed to support interoperable machine-to-machine interaction over 
a network. It has an interface described in a machine-processable format (specifically 
WSDL). Other systems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP-messages, typically conveyed using HTTP with an XML serialization in 
conjunction with other Web-related standards. 

Web services offer one approach to implementing service-oriented architecture (SOA), where the 
following conditions apply: 

• Service interfaces are described using Web Services Description Language (WSDL) [W3C 
2005a]. 

• Message payload is transmitted using Simple Object Access Protocol (SOAP) over HTTP 
(Hypertext Transfer Protocol) [W3C 2003]. 

• Universal Description Discovery and Integration (UDDI) is used for service discovery 
[OASIS 2005]. Its use is optional. 

Other combinations of technologies can be used to implement SOA, but using web services is by 
far the most common approach. For this reason, the acronym SOA is often used to imply the use 



2 | CMU/SEI-2008-TN-005 

of web services as the implementation technology. For a T-Check investigation of web services 
see Model Problems1 in Technologies for Interoperability: Web Services [Lewis 2006]. 

1.2 BUSINESS PROCESSES 

The term business process has been used in industry for a long time. Broadly defined, a business 
process describes a series of steps that need to be performed in order to provide a good or a ser-
vice; it also delineates the resources required. Some common examples of business processes in 
industry are accounts receivable, credit approval, inventory management, and shipping. The effec-
tiveness and efficiency with which these processes are executed are critical to the success of any 
organization. With increased competition, organizations have raised their attention to these 
processes and tried to optimize or completely reengineer them. For many companies, the first step 
is to capture and codify existing business processes. This provides the foundation for an analysis 
and possible later improvement of the processes based on properties such as throughput rate, flow 
time, or inventory. The most common notations for modeling or capturing business processes are 
flow charts, the Unified Modeling Language (UML), and more recently the Business Process 
Modeling Notation (BPMN) [OMG 2006, OMG 2007]. There are also many tools available in the 
market for the modeling and analysis of business processes.   

1.3 BUSINESS PROCESS MANAGEMENT 

BPM is relevant not only to managing an organization’s operations but also IT, because the ma-
jority of activities in a business are supported by software systems. These automated activities are 
the focus of our T-Check investigation. BPM includes the analysis, modeling, execution, and 
monitoring of a business process; it also involves the coordination among multiple business 
processes. In this report, we focus on the modeling of business processes for execution and subse-
quent coordination of these processes. We use business process to refer to automated activities 
and workflow when human activities are included. 

1.4 BUSINESS PROCESS MANAGEMENT AND WEB SERVICES 

During the modeling of a business process, the steps that need to be performed to achieve the goal 
of the process are identified. The modeling often starts from an existing workflow with the intent 
to automate as many steps as possible. One activity during modeling is to identify how each step 
can be implemented and whether a technology is available to do so. The necessary functionality 
may already exist in legacy systems, or it may be developed from scratch. Multiple legacy plat-
forms typically contain existing functionality; new functionality is often developed using different 
and more modern technologies. Thus, the composition of these process steps into a new business 
process can become an integration challenge.  

The Web service technology stack provides the ability to access and integrate business functional-
ity that runs on multiple heterogeneous platforms, as long as the functionality is exposed as Web 
services [W3C 2005b]. Meeting that requirement may call for the development of wrapper servic-
es around existing code to implement a BPM scenario [Leymann 2002]. Web service technologies 
also allow the newly composed business processes to be exposed as Web services, hiding the 
complexity of the underlying process implementation. 
 
1  The T-Check approach was called the model problem approach previously and is referred to as such in other 

Carnegie Mellon® Software Engineering Institute (SEI) technical notes and reports. (Carnegie Mellon is regis-
tered in the U.S. Patent and Trademark Office by Carnegie Mellon University.) 



 

 SOFTWARE ENGINEERING INSTITUTE | 3 

Splitting a business process into steps that are implemented as independent Web services allows 
an organization to be agile in changing its business processes. These services are loosely coupled, 
making it relatively easy to add new steps or remove obsolete ones from the process. Ideally, new 
business processes can be implemented by reusing existing Web services as steps of the process, 
and the implementation of one step can be replaced with a newer Web service—even a service 
provided by a third party—without having to modify and retest the whole process.   



4 | CMU/SEI-2008-TN-005 

2 BPM Specifications for Web Services 

The basic Web service standards, Simple Object Access Protocol (SOAP) and Web Service Defi-
nition Language (WSDL), specify service interfaces and the messages that can be exchanged with 
a service. BPM specifications for Web services are at a higher level and allow specifying the or-
der of service invocations and relationships between messages. Entire processes can be defined 
instead of a single interaction with a service. In this section, we explain common BPM terminolo-
gy and standards. 

2.1 COMMON TERMS USED IN A BPM CONTEXT 

Over the past years, many terms and standards have evolved in BRM. These terms are often con-
fused or used interchangeably. This section provides a quick overview and defines how the terms 
are used in this report. 

Orchestration 

An orchestration 
• specifies internal actions as well as external interactions 

• controls the complete process 

• can be executed on an orchestration engine 

• is not visible to participating services  

In a business process context, the term orchestration refers to the composition of processes from 
existing services. An orchestration defines external interactions as well as internal actions. Exter-
nal interactions include invoking other services and receiving incoming messages; internal actions 
include data transformations and calculations.  

An orchestration controls the composed process, which can be executed by an orchestration en-
gine. This engine is responsible for instantiating processes when client requests arrive, performing 
necessary data transformations, and calling external services. Orchestrations also interpret incom-
ing replies for the calling process. To a participating service, an orchestration is just another 
client. Orchestrations are themselves exposed as services that can participate in other orchestra-
tions. 

Figure 1 shows a simple view of an orchestration. In this illustration, a client calls the orchestra-
tion service representing the business process. Subsequently, the orchestration calls the participat-
ing services (Services 1-3) it needs in order to achieve the goal of the process.  



 

 SOFTWARE ENGINEERING INSTITUTE | 5 

Client Orchestration Service 1 Service 2 Service 3

Message1

Message2

Message3

Invoke Orchestration

 
Figure 1: Conceptual View of an Orchestration (UML Sequence Diagram) 

Choreography 

A choreography 
• specifies the externally observable behavior of a collection of collaborating services 

• is not executable 

• has no single controlling process 

A choreography describes service interactions from the perspective of an external observer, seeing 
only what is happening at the services’ interfaces; it does not describe what is happening inside a 
participating service. In essence, it describes a protocol of interaction among services collaborat-
ing to provide a service. This protocol specifies aspects such as the order of messages exchanged, 
types of messages, and timing constraints. Although not executable, a choreography is useful at 
both design time and runtime of a service-based software system. At design time, a choreography 
can be used as a process specification from which service interfaces can be derived. At runtime, a 
choreography can be used to monitor service interactions. In a choreography, participating servic-
es must have knowledge about the overall process they are performing; there is no controlling 
process. In particular, if the choreography describes an interaction of a service S1 with another 
service S2, this interaction must be initiated by service S1.2 In contrast, service interactions in an 
orchestration can be initiated by the orchestration engine.  

Steve Ross-Talbot, co-chair of the W3C Web Services Choreography Working Group, describes 
the difference between orchestration and choreography as follows: “Orchestration gets realized as 
an executable, so you can identify the conductor in the pit and realize that he's as much an actor as 
the violinist. Choreography, on the other hand, is a description. The choreographer writes the de-

 
2  The services participating in a choreography may be owned by multiple organizations. In such a situation, all 

participating organizations must agree on the choreography. No single organization can own and control the 
choreography. 

 



6 | CMU/SEI-2008-TN-005 

scriptions down and gives it to the dancers and works with them to make sure they learn their 
parts, but he's not there as an ‘executable actor’ when it's happening” [SearchSOA 2005]. 

Figure 2 shows a simple view of a choreography. In this illustration, a client interacts with a ser-
vice participating in a choreography (Service 1). This service then invokes another service (Ser-
vice 2), which then interacts with other services (Services 3 and 4). All of these interactions are 
described in the choreography. When they receive a message, the participating services in the 
business process know the messages to send and the services to send them to. Figure 2 also shows 
that there is no central process has control over all service interactions, as opposed to Figure 1 
where the orchestration engine is in charge of all service activities.  

Service 4Service 1 Service 2 Service 3

Message3

Message1

Message2

Message4

Message5

Message6

 
Figure 2:  Conceptual View of a Choreography (UML Sequence Diagram) 

Composition  

The term composition refers to the combining of existing processes to form a new process. Or-
chestration and choreography are types of service composition. 

Coordination 

The term coordination is most often used to refer to the WS-Coordination standards that allow the 
management of context information between interacting services [OASIS 2007a]. There are two 
related standards, WS-Transaction and WS-BusinessActivity [OASIS 2007b, OASIS 2007c]. WS-
Transaction allows for Web services to implement transactions using a two-phase commit proto-
col; WS-BusinessActivity deals with long-running transactions. Some of the concepts from WS-
BusinessActivity have been incorporated in the long-running transactions of the Web Services 
Business Process Execution Language (WS-BPEL) [OASIS 2007d].  

Workflow 

The term workflow in a BPM context generally refers to a process that involves human interac-
tion. A typical application of a workflow would be to specify the order in which dialogs or 
screens are displayed within a computer program. A workflow would also allow making the order 
dependent on user inputs. These human interactions are missing in WS-BPEL. 



 

 SOFTWARE ENGINEERING INSTITUTE | 7 

2.2 COMMON STANDARDS IN THE AREA OF BPM 

Before describing the T-Check approach, we provide a quick overview of some important stan-
dards in the area of BPM. 

2.2.1 Business Process Execution Language (BPEL) 

BPEL is a declarative language for the orchestration of business processes. BPEL originated in 
Microsoft’s XLANG (an extension of WSDL) and IBM’s Web Services Flow Language (WSFL). 
The most current version is WS-BPEL 2.0 [OASIS 2007d].  

A BPEL process makes use of Web services to fulfill its purpose. A BPEL process consists of a 
number of activities that are combined to implement the intended process logic. BPEL process 
definitions are written in XML, where activities are represented as XML elements. There are two 
classes of activities: basic and structured. Basic activities are individual steps. An example of a 
basic activity is <receive>, which pauses the process until an expected message arrives. Table 1 
shows a list of basic BPEL activities. A basic activity that is an important element of an orchestra-
tion is the <assign> activity, which extracts data from one message and translates it into the for-
mat required by a subsequent activity. BPEL uses XPath [W3C 1999] as the language to reference 
these message parts. 

Table 1:  Basic BPEL Activities 

Basic Activity Name Action 

<invoke> Call a Web service. The attributes specify the input and (if available) the output 
message.  

<receive> Wait for the arrival of a message. Each BPEL process has at least one  
<receive> activity that waits for a request from a client. 

<reply> Send back a reply message if the process execution is synchronous 

<assign> Update variable values or endpoint references in partner links. 

<throw>, <rethrow> Signal a fault. If a fault handler is defined for the raised fault, this handler is 
executed.  

<exit> Terminate a process immediately. No fault handling will be executed 

<wait> Wait for a specified time before resuming the process 

<empty> Do nothing. This activity can, for example, be useful in a fault handler, when 
the process should just ignore the error.  

Structured activities stipulate the order in which a set of activities is to be executed. An example 
of a structured activity is <forEach>. The <forEach> activity is the root tag for a loop that ex-
ecutes other activities repeatedly. A BPEL process can execute activities in order or in parallel. 
Because a BPEL process is a Web service, the orchestration can be referenced and accessed as 
such, even from other BPEL processes. An example of a BPEL process can be found in Appendix 
A. This process was implemented as part of this T-Check and is described in detail in Section 4.1. 
Table 2 lists the BPEL structured activities. 
  



8 | CMU/SEI-2008-TN-005 

Table 2: Structured BPEL Activities 

Structured Activity Name Description 

<sequence> Contains one or more activities that are performed sequentially 

<if> Provides conditional behavior 

<while>, <repeatUntil> Executes a contained activity repeatedly based on a condition 

<pick> Waits for the occurrence of exactly one event from a set of events, then ex-
ecutes the activity associated with that event 

<flow> Provides concurrency and synchronization 

<forEach> Executes a contained activity a certain number of times based on a counter 

BPEL supports long-running transactions, where the complete execution of a process may take an 
extended period of time, such as weeks. This makes it infeasible to use a mechanism such as two-
phase commit to implement these transactions. Instead, BPEL provides a mechanism called com-
pensation. A compensation process is executed when a successfully performed activity needs to 
be undone at a later point in time. The canonical example scenario for compensation is the travel 
agency orchestration. To book a trip, a travel agent service needs to contact three external servic-
es: flight reservation, hotel reservation, and rental car reservation. Assume that after the travel 
agent service has successfully booked a flight and a hotel for the trip, the whole itinerary needs to 
be canceled because there is no rental car available. Since the two reservations are already com-
pleted successfully, the travel agent service now needs to execute compensating activities, which 
in this case send cancellation requests to the flight and hotel reservation services.  

Another important concept in BPEL is correlation. Since many instances of the same business 
process can run on a single execution environment, outgoing and incoming messages need to car-
ry information to identify process instances, such that the engine can deliver each message to the 
correct process instance. 

A business process designer combines BPEL activities to achieve an intended outcome. Although 
this work is usually done using a graphical editing tool, it is important to note that BPEL does not 
specify any graphical format to express an orchestration. A BPEL process is specified in the form 
of an XML document. 

The main limitations of BPEL are that (1) it does not include ways to express human interactions 
and (2) all services participating in the orchestration must be Web services. The first issue is being 
addressed by a BPEL extension called BPEL4People that was initiated by IBM and SAP [IBM 
2007]. The restriction that only Web services can be used for interaction is a problem for organi-
zations where most of the business logic is contained in legacy applications. Using BPEL in such 
an environment requires adding a Web service wrapper for each of these applications, which is 
not always architecturally wise.   

BPEL is available in a non-executable form called abstract BPEL. An abstract BPEL process de-
fines only the external, visible characteristics of a process, such as service interfaces, messages, 
and constraints on the order in which messages may arrive at the service. Basically, an abstract 
BPEL process is the same as an executable one, except that all decisions and transformations that 
happen within an orchestration are removed. The difference between a choreography and an ab-
stract BPEL process is that the latter specifies only the external behavior of one service, whereas 
the former talks about the interaction of multiple services.  



 

 SOFTWARE ENGINEERING INSTITUTE | 9 

2.2.2 Business Process Modeling Notation (BPMN) 

BPMN is a graphical standard for the definition of business processes; it is under supervision of 
Object Management Group [OMG 2007]. The goal of this notation is to define a universal graphi-
cal language (much like UML) to describe business processes that can be understood by business 
analysts and technical people. Even though BPMN does not specify any underlying implementa-
tion, the specification has an appendix that explains how BPM constructs could be expressed in 
BPEL. Unfortunately, this explanation does not cover the entire range of BPMN features. Figure 3 
(created with Intalio BPMS Designer [Intalio 2008]) shows a BPMN view of the Order 
Processing business process that is used in the scenario described in Section 3.1. The small rec-
tangles are tasks. The big rectangle is a loop that iterates over the tasks inside the loop. There are 
also two external processes that interact with the main process via messages. 

 
Figure 3:  BPMN Diagram of the Order Processing Business Process  

2.2.3 Web Service Choreography Description Language (WS-CDL) 

WS-CDL is a Candidate Recommendation to the Worldwide Web Consortium (W3C) as a stan-
dard to describe choreographies [W3C2005c]. A WS-CDL process is not executable because it 
describes the relationship between multiple participating services. Participating services can be 
Web-service-implemented in any way, including a process definition language such as BPEL. At 
the time of writing, tool support for WS-CDL in industry is very limited.  

2.2.4 XML Process Definition Language (XPDL) 

XPDL is a standard to express workflows [WfMC 2005]. XPDL-compliant artifacts can be ex-
changed between workflow design tools and execution runtimes from different vendors. XPDL 
has the capability of storing graphical information about a process diagram, such as the X and Y 
coordinates of diagram elements.  

Beginning with version 2.0, XPDL also defines how the graphical representation of the BPMN 
can be stored in the XPDL XML-file format. So, although BPMN does not prescribe a standard 
for its file format, vendors can now use XPDL to make their diagrams interchangeable.  

 



10 | CMU/SEI-2008-TN-005 

3 Using the T-Check Approach 

The T-Check approach is a technique for evaluating technologies. This approach involves (1) 
formulating hypotheses about the technology and (2) examining these hypotheses against specific 
criteria through hands-on experimentation. The outcome of this two-stage approach is that the 
hypotheses are either sustained (fully or partially) or refuted. The T-Check approach has the ad-
vantage of producing very efficient and representative experiments that not only evaluate technol-
ogies in the context of their intended use but also generate hands-on competence with the technol-
ogies [Wallnau 2001]. A graphical representation of the four-phase T-Check process is shown in 
Figure 4. 

 
Figure 4:  T-Check Process for Technology Evaluation 

The T-Check approach is part of a larger process for context-based technology evaluation. In this 
larger process, the context for the T-Check is established and the expectations from the technolo-
gy are captured [Lewis 2005]. 

3.1 T-CHECK CONTEXT  

The context for this T-Check investigation is an organization that sells a diverse set of products. 
To fulfill customer orders, the organization uses an application developed in-house. This applica-
tion is integrated with the accounting system, so that a bill can be sent to the customer once an 
order is fulfilled. Other systems, such as the inventory and shipment application, are not yet inte-
grated. Suppliers are contacted via phone or e-mail when products need to be reordered.  

Develop 
Hypotheses

Develop 
Criteria

Design and 
Implement Solution

Evaluate Solution 
Against Criteria

[Hypotheses Sustained] [Hypotheses Refuted]

Context



 

 SOFTWARE ENGINEERING INSTITUTE | 11 

The organization has suppliers and customers that wish to do business over the Internet using 
Web services. The organization sees this as a chance to fully integrate its existing applications. As 
a first step, Web service wrappers were created around some of the legacy systems. The organiza-
tion is now contemplating whether the new integrated processes should be based on the BPEL 
standard. One reason for considering this standard is that it seems very easy to build processes 
with BPEL, which would be an advantage given the organization’s small development staff. Also, 
because it seems likely that the organization will undergo a merger in the future, it wants to make 
sure that business processes can be easily exchanged with new partners or deployed on a different 
platform.  

The organization wants to answer the following questions: 
1. Can different BPM tools exchange business process definitions? 

2. Can BPM tools hide the complexity of process orchestration, or does IT staff have to be 
trained in BPM concepts? 

3. How easy will it be to change deployed business processes in case of a merger? 

3.2 HYPOTHESES FOR THIS T-CHECK 

For BPM in a Web services context, we defined the following initial hypotheses, based on claims 
found in experience reports and on vendor Web sites: 

1. Business process descriptions can be exchanged between different design tools and runtime 
engines. 

2. The development effort for integration is reduced through the use of a BPM tool. 

3. Business processes can be changed dynamically at runtime. 

3.3 CRITERIA FOR THE HYPOTHESES  

Table 3 shows the evaluation criteria for the above hypotheses. 

Table 3:  Evaluation Criteria 

Hypothesis Criteria 

Business process descriptions 
can be exchanged between 
different design tools and run-
time engines. 

Process design tools can export the graphical process descriptions in a stan-
dard format that other design tools can import without modification. 

An business process that relies only on web services can be executed on dif-
ferent runtime engines without modification. 

The development effort for inte-
gration is reduced through the 
use of a BPM tool. 

A business process can be described in a graphical fashion without requiring 
in-depth technical background knowledge about XML, SOAP, WSDL, etc.  

Process descriptions can be used by tools to create the stubs to begin the 
process implementations.  

The tools provide support for the integration of existing Web services into the 
business process. 

Business processes can be 
changed dynamically at runtime. 

New process versions can be deployed without causing downtime.  

Business rules can be changed on the fly.  

Tools support the deployment of new processes at runtime.  

 



12 | CMU/SEI-2008-TN-005 

4 Designing and Implementing the Solution 

4.1 DEFINING A SYSTEM ARCHITECTURE BASED ON THE T-CHECK CONTEXT 

To design the solution, we created a notional architecture of the system based on the T-Check 
context discussed in Section 3.1. This architecture helped to determine the software requirements 
for the development and runtime environments. In compliance with the T-Check approach, the 
solution represents the simplest one possible that can be used to evaluate the hypotheses. Figure 5 
illustrates the notional architecture designed for this T-Check investigation.  

Order Processing 
Application

(BPEL)

Client

Inventory Application

Accounting Application

Supplier Application

Shipping Application

SOAP Connector
(X calls Y)

Legend

External

Web Service

ApplicationInternal

X Y

 
Figure 5: Notional System Architecture 

The architecture contains the following components: 

• The Client is a software client that sends SOAP requests to the Order Processing Applica-
tion. 



 

 SOFTWARE ENGINEERING INSTITUTE | 13 

• The Order Processing Application accepts customer orders and processes them. The Order 
Processing Application is implemented as a BPEL process and executed on a BPEL runtime 
engine. The BPEL process exposes a Web service interface that the Client can use to submit 
orders. 

• The Inventory Application is a Web service wrapper around the legacy inventory applica-
tion. The Inventory Application checks the stock to decide whether enough goods are availa-
ble to fulfill the order.  

• The Accounting Application is a Web service wrapper around the legacy accounting applica-
tion. This application looks up the prices for the ordered products and sends an invoice to the 
customer. The Accounting Application expects information about the order and the client in 
order to send out the invoice.  

• The Shipping Application is another Web service wrapper around a legacy application. It is 
the link to the warehouse. When this application receives the shipment request, it initiates the 
process to ship the goods to the client.  

• The Supplier Application represents the external product provider. This service is called 
when there are not enough items in stock to fulfill the client order. 

For this T-Check investigation, we created implementations that provide rather trivial functionali-
ty for all components except the order processing application. This level of functionality is suffi-
cient because the hypotheses are only concerned with the BPEL orchestration used to implement 
order processing. The functionality is as follows: 

• The client is a simple .NET WinForms application to enter an order quantity. To save devel-
opment time, we also use this application to simulate arrival of goods in inventory. This way 
we did not have to write a separate application to provide this functionality. 

• Our inventory application returns the value true if the requested amount is less than six; oth-
erwise, it returns the value false.  

• Our accounting, shipping, and supplier applications simply log the incoming request mes-
sages. 

Our testing scenario requires the use of four external systems. Although the hypotheses could be 
evaluated with a smaller number of orchestrated services, four seems to be a realistic number for 
this integration project. At the same time, using four allows a certain complexity in the experi-
ment.  

Figure 6 shows a flow chart of the implemented business process.3 The steps it illustrates are as 
follows:  

1. The order arrives. 

2. On arrival of an order message, for every order item, check if the ordered quantity is availa-
ble in local inventory. 

a. If the item is available (Yes), send item to the customer immediately. 

b. If the item is not available (No), order item from the supplier. Upon arrival of the item, 
send it to the customer. 

 
3  The process is not very realistic because it is inefficient, but it fulfills the needs of the evaluation. 



14 | CMU/SEI-2008-TN-005 

3. After sending an item to the customer, check if all order items have been shipped. 

a. If all items have been shipped, bill the customer. 

b. If all items have not been shipped, wait for items to arrive. 

Enough 
inventory?

Reorder

No Yes

Order complete?

Ship Item

Order 
Arrives

Check availability 
of every order item 

Send bill

No

Yes

Yes

Supplies arrived?

No

Supplies
Arrive

Decision

Activity

Message flow

Sequence flow

Event

Legend

 
Figure 6: Flow Chart of the Order Processing Business Process 

The mapping between the activities in Figure 6 and the elements of the notional architecture is 
shown in Figure 7. 



 

 SOFTWARE ENGINEERING INSTITUTE | 15 

 
Figure 7: Order Processing Activities (UML Activity Diagram) 

4.2 SELECTING TOOLS FOR DEVELOPMENT AND RUNTIME 

One constraint on this T-Check investigation was a limited budget for the implementation. There-
fore, we developed the solution using only tools that were available without charge. Another con-
straint was the availability of a stable release (at least a 1.0 version) of the products used. For the 
implementation of the web services, we used tools we were familiar with and that had a certain 
market acceptance. The tools we used are as follows: 

• Apache Tomcat 6.0—a Java Servlet container to host the Web services and a simple web 
client application [Apache 2007] 

• Apache Axis 2.0—a set of development tools and runtime libraries for web services devel-
opment [Apache 2005] 

• Microsoft IIS 6.0—a web server for the Microsoft Windows XP operating system that can 
host web services 

• Sun Microsystems Application Server PE 9—a web and application server that hosts Java 
web services that also provides a BPEL runtime 

To host the web services, we selected Tomcat/Axis and IIS because we had previous experience 
using them. Sun’s Application Server was added as a web service host because we also wanted to 



16 | CMU/SEI-2008-TN-005 

use it for testing the BPEL interoperability. Using it as web service host also allowed the simula-
tion of the diversity of legacy systems which could be expected in the scenario.  

For BPEL development, there was also limited budget; therefore, we selected two free products 
that had some good user reports: 

• Active Endpoint ActiveBPEL Designer v4.1 

• Sun Microsystems NetBeans IDE 6.0 

It should be noted that we are not endorsing these tools and that we did not go through a rigorous 
selection process. We chose these tools because we are familiar with them and they are available 
at no cost. These considerations will likely be different in other projects. 

4.3 IMPLEMENTING THE T-CHECK SOLUTION 

We used Active Endpoints ActiveBPEL Designer to implement the orchestration. This product 
provides a graphical user interface that allows the creation of a BPEL process via drag-and-drop 
functionality.  

To begin the orchestration process, the WSDL files of all the involved services need to be availa-
ble. In the T-Check scenario, the legacy systems already have web service wrappers. The WSDL 
files from these services can be imported into the BPEL tool.  

Because the BPEL process itself needs to be made available as a web service by the BPEL run-
time, the next step is to define the service interface of the orchestration. We used a top-down ap-
proach, which means that we created the WSDL file manually in a WSDL editor. Alternatively, 
we could have used a bottom-up approach where the WSDL file is generated based on a pre-
existing service implementation. 

Having all the service interfaces in place, we defined the required basic and structured BPEL ac-
tivities in the graphical ActiveBPEL editor. All messages must have an identifier, so that the 
BPEL engine knows which process to activate and which of the outstanding items is ready for 
shipment. This coordination between a waiting process and an arriving asynchronous message is 
called correlation in BPEL.  Figure 8 shows a view of the ordering process as implemented. The 
document symbols with arrows represent <assign> activities. In this process, they are used to 
copy information between the messages. For example, in the AssignSupplyInfo activity, the num-
ber of items that need to be reordered is set in the message that is sent to the supplier. In our solu-
tion, this number is calculated as the difference between items ordered by the customer and items 
in stock. The scope shown within the <forEach> activity loop is equivalent to scope in traditional 
programming languages.   



 

 SOFTWARE ENGINEERING INSTITUTE | 17 

 
Figure 8:  Ordering Process in ActiveBPEL 



18 | CMU/SEI-2008-TN-005 

One important development task in building an orchestration is the specification of so called part-
ner link types. A partner link type defines a relationship between the orchestration and a partici-
pating web services. These definitions are stored in a WSDL file. As an example, we show the 
definition of the partner link type for the inventory service: 

<plnk2:partnerLinkType  
xmlns:plnk2="http://docs.oasis-open.org/wsbpel/2.0/plnktype"  
name="inventoryLT"> 

    <plnk2:role name="inventoryRole"  
    portType="tns:InventoryServiceInterface"/> 

</plnk2:partnerLinkType> 

Each partner link type specifies at least one role. The role in the example is inventoryRole. The 
partner link type also names the port type that provides this role. The reference to 
tns:InventoryServiceInterface specifies a port type in the WSDL file of the inventory ser-
vice. 

One challenge in the process design is that, after a supply order is sent out, the process waits until 
the supplies arrive in the warehouse. Upon their arrival, a warehouse application recognizes that 
the delivered items are part of an outstanding customer order, and the Inventory Application sends 
a message to the Order Processing Application. Because modeling of this additional message did 
not add value to our hypothesis evaluation, we implemented this step through simple hard-coded 
reactivate messages sent from the client on demand. 

All messages must have an identifier, so that the BPEL engine knows which process to activate 
and which of the outstanding items is ready for shipment. This coordination between a waiting 
process and an arriving asynchronous message is called correlation in BPEL. To make the order 
processing business process efficient, the inventory check, potential reordering, and waiting for 
supplies activities occur in parallel for all items. This flow means that there can be multiple paral-
lel <receive> activities in the same process waiting for the same message from the same partner 
link. Overall, there is only one process instance per order, and each instance executes activities in 
parallel for each order item. Thus, it is not enough to use a correlation value unique to the process, 
but one that is unique to every reorder request. After the orchestration is complete, the correlation 
can be simulated with test values. The BPEL design tools support testing and debugging, because 
they provide support for connecting to a running process and inspecting its state and variable val-
ues. 

The next step in the process design is to build a deployment descriptor for the orchestration. This 
descriptor is used by the BPEL runtime engine to find the needed WSDL files. Additionally, bind-
ing information can be specified. If, for example, the service endpoint location needs to be ex-
tracted dynamically from incoming messages, it can be defined here. In the last step, we package 
the BPEL process with the deployment descriptor and deploy it to the runtime engine. A copy of 
the deployment descriptor produced for this report is included in Appendix B. At this point the 
orchestration is ready for execution. Figure 9 shows how the parts of the system are deployed. 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 19 

<<device>>
AppServer

<<J2EE container>>
Tomcat

<<BPEL runtime>>
ActiveBPELEnginee

OrderProcessingService

<<.NET host>>
IIS 6.0

InventoryService

<<device>>
AppServer2

<<J2EE container>>
Sun Server 9

SupplierService

ShippingService

AccountingService

<<http>>

 
Figure 9:  Deployment Diagram (UML) 

4.4 IMPORTING THE BPEL PROCESS INTO NETBEANS 

This section describes the adjustments required when the BPEL process was loaded in the second 
BPEL design tool, NetBeans 6.0. (Recall that our first hypothesis is that business process descrip-
tions can be exchanged between different design tools and runtime engines.) First, we copied the 
process file into a new NetBeans “BPEL Module” project. The NetBeans BPEL editor laid out the 
process elements according to its rules. This behavior was expected, since BPEL does not save 
any graphical information about the process. Also there were a couple of error messages dis-
played: 

• Element “correlationSets” as child of “scope” is not supported by the Sun BPEL SE.  
In the process, the correlation set is used to map order supply requests to the message that is 
sent from the Inventory Application, when supplies arrive. This correlation set was defined in 
the scope of the <forEach> loop. In the current version of the product, correlation sets are on-



20 | CMU/SEI-2008-TN-005 

ly allowed at the process level. We copied the declaration to the process element without 
problems. 

• Element “from” as child of “variable” is not supported by the Sun BPEL SE.  
The <from> element was used in the process to initialize the process variable that holds 
the counter value while iterating over the order items in the client order. This element 
was easily replaced with an additional <assign> activity that set the counter to its initial 
value. 

Additionally, there was a warning: 

• Attribute “parallel” is not yet supported by the Sun BPEL SE. This attribute will be ig-
nored at runtime. 
This warning applied to the <forEach> statement. The original process is designed so that 
it can iterate over all order items in parallel. This parallel activity includes checking the 
local stock and, if necessary, ordering and waiting for supplies and the shipment of the 
goods. Although the warning did not prevent the process from execution, it indicates that 
a bigger problem will occur during runtime. If the <forEach> branches cannot execute in 
parallel, the processing of the next order item can only start after the previous one has 
been shipped. If one of the order items has to be reordered from the supplier, the whole 
process is blocked until the supplies arrive. This consequence is especially unfortunate 
when all the subsequent order items could be shipped from the local stock. Of course, the 
problem could be avoided by redesigning the process to, for example, check the list of 
order items for availability in its own loop. After that check, the goods not in stock could 
be ordered while the available items could be shipped.   

We resolved these and other issues by upgrading to version 9.1 of the Sun application server and 
making the following changes to the deployment descriptor: 

1. We added binding information to all WSDL files, including the ones that describe the in-
terface to the orchestration.  

2. We updated the namespaces of some of the partner link type definitions. (These updates 
were done in response to warnings, so the process might have worked with the old na-
mespaces.)  

3. We converted the <query> expressions in the <copy> statements of the <assign> activi-
ties to ordinary XPath expressions. The runtime could not interpret the <query> state-
ments. It took some experimentation to solve this problem because the NetBeans design-
er did not create any error or warning messages to indicate that the orchestration engine 
was not able to process the statements. 

Overall, it required more effort than expected to make the orchestration work on another engine. 

4.5 UPDATING A RUNNING BPEL PROCESS 

To verify that it is possible to update a BPEL process that is currently executing, we created a 
variant of our main process that invokes shipping twice. In the tool, we started the execution of 
the original process and deployed the updated version during the execution of the original process. 
The tool continued execution of the already started process using the old process definition and 
used the updated process only for newly started processes. 



 

 SOFTWARE ENGINEERING INSTITUTE | 21 

5 Evaluation and Experience with the BPM Tools 

In this section, we present the results of evaluating the solution against the criteria. 

5.1 RESULTS FOR HYPOTHESIS 1 

Hypothesis 1: Business process descriptions can be exchanged between different design tools 
and runtime engines. 

This hypothesis is mostly sustained.  

We encountered problems only in conjunction with (1) an incomplete implementation of the 
BPEL 2.0 specification and (2) deployment descriptors.  

The first problem is a product-specific issue and thus not very interesting from the perspective of 
this evaluation. It is very likely that the next tool version will support the full standard. The prob-
lems encountered were simple and were fixed by making small adjustments to the process. None-
theless, the issue is something that is good to know early in the development cycle. 

The second problem is due to every tool in the experiment using its own version of the deploy-
ment descriptor. A deployment descriptor is used to link the BPEL processes with specifics about 
the runtime environment. For example, deployment descriptors contain the addresses of the part-
ner services. There is no standard for the definition of these deployment descriptors, and therefore 
they need to be recreated when migrating between tools. The proprietary nature of the descriptors 
is not a surprise because at some point there needs to be a mapping from the process description 
to the functionality of the specific product. In bigger projects, it may be necessary to develop tool 
support for deployment descriptor conversion. 

In addition to those problem areas, we noticed some areas where effort is required to use the 
BPEL tool: 

• The graphical representation of the designed processes is not preserved when a BPEL 
process is opened with another BPEL design tool. This occurs because BPEL does not con-
tain format or positioning information of elements within a process description. When a 
BPEL file is opened with a new tool, that product tries to lay out the process according to its 
own algorithms. 

• The tools used for the implementation can also handle abstract processes. If a process is de-
clared abstract, the tool’s evaluation functionality issues errors if elements contained in the 
process are not allowed in an abstract processes. This functionality allows exporting an ab-
stract process, which can then be used by a partner organization as a contract to develop the 
interaction with the BPEL process.  
This behavior becomes a problem only when product-specific extensions are used broadly 
for the implementation of a BPEL process. Both tools that we evaluated offered their own 
additional functionality. For example, ActiveBPEL supports access to some runtime proper-
ties such as ProcessId. Other tools from vendors such as Oracle and IBM offer ways to in-
clude workflows and business rules engines into BPEL processes. Also, there are extensions 
to directly access Java methods. The use of these extensions increases vendor lock-in. In 



22 | CMU/SEI-2008-TN-005 

case of a migration to a different platform, that functionality would need to be re-
implemented as extensions of the target orchestration engine. 

In summary, there will most likely be some “tweaks” for the orchestration to work on a new plat-
form, but the effort spent defining the process in one tool is not wasted when migrating to another 
tool. To maximize the reusability of processes, we recommend avoiding proprietary extensions 
where possible and documenting any use of extensions. 

5.2 RESULTS FOR HYPOTHESIS 2 

Hypothesis 2: The development effort for integration is reduced through the use of a BPM 
tool. 

This hypothesis is not sustained in all cases.  

It is important to clarify, though, that our analysis of effort reduction is not based on time because 
we have no data on the time required by other approaches for comparison. The criteria for this 
hypothesis look for tool functionality that would make the effort easier—specifically in graphical 
design, process implementation stubs, and integration with existing Web services.  

There are two reasons we evaluate the tool as not fully sustaining our hypothesis. First, the effort 
for integration includes more than the development of the orchestration process itself. Because 
BPEL can only interact with Web services, there is additional effort required to develop partici-
pating services and wrappers around the legacy code that implements the processes. In some sim-
ple cases, it might even be easier to write a program in Java or some other language. Compared to 
Java, it is also cumbersome to express complex logic with the capabilities of BPEL and XPath 
expressions. As a result, there might be a need to develop additional services to encapsulate such 
functionality. These new services would be invoked from the BPEL process. 

Second, the tools used in the T-Check could not completely hide the need for technical know-
ledge. Although the tools provide a graphical editor for creating an orchestration, the design ele-
ments are just a visual representation of the underlying technical concepts. Thus, certain know-
ledge of programming constructs (decisions, loops) is required. Tools that work at that level 
usually are fine for simple and medium complexity cases, but we doubt that they scale to more 
complex situations. A similar case is the use of graphical database query editors, where SQL 
knowledge will be required for writing complex queries. In BPEL, knowledge about WSDL or 
XPath expressions is necessary to define complex processes. Also, the definition of fault handlers 
is not easy to understand for a non-technical person. At the very least, technical knowledge will 
be required when the process is ready for deployment and possible errors need to be debugged. 

There are tools in the market that work on a higher level of abstraction than BPEL. Products for 
business process definition, such as BPMN, allow a process to be drawn in a non-executable for-
mat. BPMN should be easy to understand for non-technical personnel such as business analysts. 
Some of these BPMN tools provide capabilities for generating BPEL code. But the creation of 
BPEL code from BPMN is a non-trivial task since BPMN and BPEL represent two different lan-
guage classes [Ouyang 2006]. The experiments performed for this T-Check did not look into the 
BPEL code generation capabilities of BPMN tools. Such an investigation could be done as future 
work. 

The tools we used in the experiments provided good support for the use of existing web services. 
They provided wizards that helped with the location of WSDL files, the selection of the required 



 

 SOFTWARE ENGINEERING INSTITUTE | 23 

ports and messages, and the creation of partner links. Therefore, development is simplified by the 
availability of these features that help with the integration of existing services. 

The real benefit of having a process in BPEL is not a decrease of development time. It may be 
gained from the easy way in which a BPEL process can be changed and redeployed during its 
lifetime and the link to service repositories available to the people defining business processes. 
Overall, we do not have the impression that building a BPEL orchestration is always faster than 
implementing the same functionality as a traditional Java component. The choice to use BPEL or 
Java certainly depends on knowledge about them and their associated tools. 

For the development effort, the BPEL capabilities used in the orchestration are most important. In 
that aspect, BPEL engines provide more support and Java may require more work, such as in the 
implementation of parallel activities and the correlation of processes. Also, the ability to specify a 
compensation process in case of a failure is a further benefit of BPEL. During compensation, the 
engine will restore all variables to the state they were in when the compensated scope was started. 
Additionally, runtime engines provide automatic dehydration capabilities. Dehydration describes 
the functionality of saving process state information for long-running processes to a file or data-
base to save system resources. Additionally, state information needs to be saved in case of a sys-
tem shutdown. On the arrival of the expected message, the engine will activate the dehydrated 
process and restore its state.   

5.3 RESULTS FOR HYPOTHESIS 3 

Hypothesis 3: Business processes can be changed dynamically at runtime. 

This hypothesis is sustained. 

The experiments have shown that one version of a process can be replaced with a newer version 
of that process without interrupting service execution. For the products we used, we observed that 
a running process was completed with the old process definition, and a new process was executed 
with the new definition. The question is whether this behavior is always desired from a business 
perspective. 

The experiments performed did not look into the integration of business rules engines and BPEL 
engines, but we expect that a business rule engine would integrate well, as long as it provides a 
web services interface. In that case, the interaction between the two engines would work with 
standard BPEL activities (<invoke>, <receive>) and the capabilities for dynamic change of the 
rules would be dependent on the functionality of the business rules engine.  



24 | CMU/SEI-2008-TN-005 

6 Future Work 

There are two areas not covered in this T-Check investigation that could be of interest for organi-
zations interested in BPM adoption. Those areas are 
1. BPMN to BPEL mapping 

It would be interesting to see how well current tools create BPEL code from BPMN dia-
grams. Aspects to look at would be the amount of human effort that is required to make the 
code executable and the degree of support needed for round-trip engineering. 

2. Workflow and business rule engine integration 
As mentioned in the report, some BPM products provide extensions for the incorporation of 
human tasks and business rules engines. Thus, a topic to look at further is how easily these 
extended processes can be changed at runtime. 

 



 

 SOFTWARE ENGINEERING INSTITUTE | 25 

7 Conclusions and Call for Response 

Our T-Check investigation into BPM in a web services context shows that it is possible to ex-
change business process definitions between tools adhering to the standards in this area. Although 
the work for composing business processes is at a higher level than using traditional programming 
languages, it still requires a good level of technical knowledge. Even in the small scenario imple-
mented in this T-Check, many different technologies and standards are involved and concepts 
such as correlation need to be understood. This is certainly not a level at which business analysts 
and other non-technical personnel can work. Overall, this T-Check investigation contributed to 
our understanding of how business processes can be composed out of independent web services.  

The team in the Integration of Software-Intensive Systems (ISIS) Initiative at the SEI that is in-
vestigating BPM and other technologies using the T-Check approach is interested in feedback 
from and collaboration with the communities that are considering technologies for service-
oriented environments. Write to the ISIS team at isis-sei@sei.cmu.edu. 



26 | CMU/SEI-2008-TN-005 

Appendix A BPEL File for the Order Processing Application 

<?xml version="1.0" encoding="UTF‐8"?> 
<!‐‐ 
BPEL Process Definition 
Edited using ActiveBPEL(r) Designer Version 4.1.0 (http://www.active‐endpoints.com) 
‐‐> 
<bpel:process xmlns:abx="http://www.activebpel.org/bpel/extension"  
    xmlns:bpel=http://docs.oasis‐open.org/wsbpel/2.0/process/executable  
    xmlns:ext="http://www.activebpel.org/2006/09/bpel/extension/query_handling"  
    xmlns:ns="http://tempuri.org/InventoryMessages.xsd"  
    xmlns:ns1="http://www.bpm‐test.com/OrderingOrganization/"  
    xmlns:ns2="http://testpartnerlink.com"  
    xmlns:ns3="http://www.bpm‐test.com/AccountingService/"  
    xmlns:ns4="http://test_supplier.com/Supplier/"  
    xmlns:ns5="http://www.bpm‐test.com/ShipmentService/"  
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"  
    ext:createTargetXPath="yes" name="OrderingProcess" suppressJoinFailure="yes"  
    targetNamespace="http://OrderingProcess"> 
 
  <bpel:extensions> 
    <bpel:extension mustUnderstand="yes"  
        namespace="http://www.activebpel.org/2006/09/bpel/extension/query_handling"/> 
  </bpel:extensions> 
 
  <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"  
    location="InventoryService.wsdl"  
    namespace="http://www.bpm‐test.com/OrderingOrganization/"/> 
  <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"  
    location=http://localhost/InventoryService/inventoryservice.asmx?WSDL 
    namespace="http://www.bpm‐test.com/OrderingOrganization/"/> 
  <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"  
    location="AccountingService.wsdl"  
    namespace="http://www.bpm‐test.com/AccountingService/"/> 
  <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"  
    location="ShipmentService.wsdl"  
    namespace="http://www.bpm‐test.com/ShipmentService/"/> 
  <bpel:import importType=http://schemas.xmlsoap.org/wsdl/ 
    location="OrderingProcess.wsdl"  
    namespace="http://www.bpm‐test.com/OrderingOrganization/"/> 
  <bpel:import importType="http://schemas.xmlsoap.org/wsdl/"  
    location="SupplierService.wsdl"  
    namespace="http://test_supplier.com/Supplier/"/> 
 
  <bpel:partnerLinks> 
    <bpel:partnerLink myRole="orderGoodsService" name="orderingLink"  
        partnerLinkType="ns1:orderProcessLT"/> 
    <bpel:partnerLink name="inventoryLT1" partnerLinkType="ns1:inventoryLT"  
        partnerRole="inventoryRole"/> 
    <bpel:partnerLink name="supplierLT1" partnerLinkType="ns4:supplierLT"  
        partnerRole="supplierRole"/> 
    <bpel:partnerLink name="accountingLT" partnerLinkType="ns3:accountingLT"  
        partnerRole="AccountingRole"/> 
    <bpel:partnerLink myRole="supplierCallBackRole" name="supplierCallBackLT"  
        partnerLinkType="ns1:supplierCallBackLT"/> 
    <bpel:partnerLink name="shippingLT" partnerLinkType="ns5:shippingLT" partnerRole="shippingRole"/> 
  </bpel:partnerLinks> 
 
  <bpel:messageExchanges><bpel:messageExchange name="Exchange1"/></bpel:messageExchanges> 
 



 

 SOFTWARE ENGINEERING INSTITUTE | 27 

  <bpel:variables> 
    <bpel:variable messageType="ns1:checkAvailabilityIn" name="checkAvailabilityIn"/> 
    <bpel:variable messageType="ns1:checkAvailabilityOut" name="checkAvailabilityOut"/> 
    <bpel:variable messageType="ns4:OrderSuppliesRequest" name="OrderSuppliesRequest"/> 
    <bpel:variable messageType="ns4:OrderSuppliesResponse" name="OrderSuppliesResponse"/> 
    <bpel:variable messageType="ns3:BillCustomerRequestMessage" name="BillCustomerRequestMessage"/> 
    <bpel:variable messageType="ns3:BillCustomerResponseMessage" name="BillCustomerResponseMessage"/> 
    <bpel:variable messageType="ns5:ShipProductRequest" name="ShipProductRequest"/> 
    <bpel:variable messageType="ns5:ShipProductResponse" name="ShipProductResponse"/> 
    <bpel:variable messageType="ns1:CustomerOrderMessage" name="CustomerOrderMessage"/> 
    <bpel:variable messageType="ns1:OrderSuppliesCallbackRequest" name="OrderSuppliesCallbackRequest1"/> 
    <bpel:variable name="SupplyOrdersCounter" type="xsd:int"> 
      <bpel:from> 
        <bpel:literal>0</bpel:literal> 
      </bpel:from> 
    </bpel:variable> 
  </bpel:variables> 
 
  <bpel:sequence> 
    <bpel:receive createInstance="yes" name="ReceiveOrder" operation="OrderProducts"  
        partnerLink="orderingLink" portType="ns1:OrderProductsPT" variable="CustomerOrderMessage"/> 
    <bpel:forEach counterName="counter" parallel="yes"> 
      <bpel:startCounterValue>1</bpel:startCounterValue> 
      <bpel:finalCounterValue>count($CustomerOrderMessage.order/ns1:OrderItem)</bpel:finalCounterValue> 
      <bpel:scope> 
        <bpel:variables> 
          <bpel:variable name="OrderItem" type="ns1:OrderItemType"/> 
      </bpel:variables> 
      <bpel:correlationSets> 
        <bpel:correlationSet name="CS1" properties="ns4:SupplyCorrelationProperty"/> 
      </bpel:correlationSets> 
      <bpel:sequence> 
        <bpel:assign name="AssignInventoryCheckInfo"> 
          <bpel:copy> 
            <bpel:from part="order" variable="CustomerOrderMessage"> 
              <bpel:query>ns1:OrderItem[$counter]</bpel:query> 
            </bpel:from> 
            <bpel:to variable="OrderItem"/> 
          </bpel:copy> 
          <bpel:copy> 
            <bpel:from variable="OrderItem"> 
              <bpel:query>ns1:productId</bpel:query> 
            </bpel:from> 
            <bpel:to part="messagePart" variable="checkAvailabilityIn"> 
              <bpel:query>ns:productId</bpel:query> 
            </bpel:to> 
          </bpel:copy> 
        </bpel:assign> 
        <bpel:invoke inputVariable="checkAvailabilityIn" name="CheckInventory" operation="checkAvailability"  
            outputVariable="checkAvailabilityOut" partnerLink="inventoryLT1" 
             portType="ns1:InventoryServiceInterface"/> 
          <bpel:if> 
            <bpel:condition> 
              $checkAvailabilityOut.messagePart/ns:availableItems &lt; $OrderItem/ns1:amount 
            </bpel:condition> 
            <bpel:sequence> 
              <bpel:assign name="AssignSupplyInfo"> 
                <bpel:copy> 
                  <bpel:from variable="OrderItem"> 
                    <bpel:query>ns1:productId</bpel:query> 
                  </bpel:from> 
                  <bpel:to part="order" variable="OrderSuppliesRequest"> 
                    <bpel:query>ns4:OrderItem/ns4:productId</bpel:query> 



28 | CMU/SEI-2008-TN-005 

                  </bpel:to> 
                </bpel:copy> 
                <bpel:copy> 
                  <bpel:from> 
                    $OrderItem/ns1:amount ‐ $checkAvailabilityOut.messagePart/ns:availableItems 
                  </bpel:from> 
                  <bpel:to part="order" variable="OrderSuppliesRequest"> 
                    <bpel:query>ns4:OrderItem/ns4:amount</bpel:query> 
                  </bpel:to> 
                </bpel:copy> 
                <bpel:copy> 
                  <bpel:from> 
                    <bpel:literal>CustomerId19</bpel:literal> 
                  </bpel:from> 
                  <bpel:to part="order" variable="OrderSuppliesRequest"> 
                    <bpel:query>ns4:customerId</bpel:query> 
                  </bpel:to> 
                </bpel:copy> 
                <bpel:copy> 

  <bpel:from variable="SupplyOrdersCounter"> 
    <bpel:query>$SupplyOrdersCounter</bpel:query> 
  </bpel:from> 
  <bpel:to part="order" variable="OrderSuppliesRequest"> 
    <bpel:query>ns4:orderId</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from> 
    <bpel:literal>0</bpel:literal> 
  </bpel:from> 
  <bpel:to part="order" variable="OrderSuppliesRequest"> 
    <bpel:query>ns4:orderId</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from variable="counter"> 
    <bpel:query>$counter</bpel:query> 
  </bpel:from> 
  <bpel:to part="order" variable="OrderSuppliesRequest"> 
    <bpel:query>ns4:orderId</bpel:query> 
  </bpel:to> 
</bpel:copy> 

              </bpel:assign> 
              <bpel:invoke inputVariable="OrderSuppliesRequest" name="OrderSupplies"  
                  operation="OrderSupplies" outputVariable="OrderSuppliesResponse"  
                  partnerLink="supplierLT1" portType="ns4:Supplier"> 
                <bpel:correlations> 
                  <bpel:correlation initiate="yes" pattern="request" set="CS1"/> 
                </bpel:correlations> 
              </bpel:invoke> 
              <bpel:receive operation="SupplierCallBack" partnerLink="supplierCallBackLT"  
                  portType="ns1:SupplierCallBackPT" variable="OrderSuppliesCallbackRequest1"> 
                <bpel:correlations> 
                  <bpel:correlation initiate="no" set="CS1"/> 
                </bpel:correlations> 
              </bpel:receive> 
              <bpel:assign name="AssignShippingInfo"> 

<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:Name</bpel:query> 
  </bpel:from> 
  <bpel:to part="ShipProductRequest" variable="ShipProductRequest"> 
    <bpel:query>Name</bpel:query> 



 

 SOFTWARE ENGINEERING INSTITUTE | 29 

  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:Address</bpel:query> 
  </bpel:from> 
  <bpel:to part="ShipProductRequest" variable="ShipProductRequest"> 
    <bpel:query>Address</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:City</bpel:query> 
  </bpel:from> 
  <bpel:to part="ShipProductRequest" variable="ShipProductRequest"> 
    <bpel:query>City</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from variable="OrderItem"> 
    <bpel:query>ns1:productId</bpel:query> 
  </bpel:from> 
  <bpel:to part="ShipProductRequest" variable="ShipProductRequest"> 
    <bpel:query>ProductId</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from variable="OrderItem"> 
    <bpel:query>ns1:amount</bpel:query> 
  </bpel:from> 
  <bpel:to part="ShipProductRequest" variable="ShipProductRequest"> 
    <bpel:query>Amount</bpel:query> 
  </bpel:to> 
</bpel:copy> 

              </bpel:assign> 
              <bpel:invoke inputVariable="ShipProductRequest" name="ShipProduct" operation="ShipProduct"  
                  outputVariable="ShipProductResponse" partnerLink="shippingLT"  
                  portType="ns5:ShipmentService"/> 
            </bpel:sequence> 
          </bpel:if> 
        </bpel:sequence> 
      </bpel:scope> 
    </bpel:forEach> 
    <bpel:assign name="AssignBillingInfo"> 

<bpel:copy> 
  <bpel:from> 
    <bpel:literal>OrderId555</bpel:literal> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 
    <bpel:query>OrderId</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from> 
    <bpel:literal> 
      <BillingPositionType xmlns:ns5="http://http://www.bpm‐test.com/ShipmentService/"  
          xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance" xsi:type="ns3:BillingPositionType"> 
        <Description>string</Description> 
        <Price>10</Price> 
      </BillingPositionType> 
    </bpel:literal> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 



30 | CMU/SEI-2008-TN-005 

    <bpel:query>BillingPosition</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from> 
    <bpel:literal>100</bpel:literal> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 
    <bpel:query>Total</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:Name</bpel:query> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 
    <bpel:query>CustomerAddress/Name</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:Address</bpel:query> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 
    <bpel:query>CustomerAddress/Street</bpel:query> 
  </bpel:to> 
</bpel:copy> 
<bpel:copy> 
  <bpel:from part="order" variable="CustomerOrderMessage"> 
    <bpel:query>ns1:CustomerInfo/ns1:City</bpel:query> 
  </bpel:from> 
  <bpel:to part="BillCustomer" variable="BillCustomerRequestMessage"> 
    <bpel:query>CustomerAddress/City</bpel:query> 
  </bpel:to> 
</bpel:copy> 

    </bpel:assign> 
    <bpel:invoke inputVariable="BillCustomerRequestMessage" name="BillCustomer" operation="BillCustomer"  
        outputVariable="BillCustomerResponseMessage" partnerLink="accountingLT"  
        portType="ns3:AccountingService"/> 
  </bpel:sequence> 
</bpel:process> 



 

 SOFTWARE ENGINEERING INSTITUTE | 31 

Appendix B ActiveBPEL Deployment Descriptor 

<?xml version="1.0" encoding="UTF‐8"?> 
<process xmlns="http://schemas.active‐endpoints.com/pdd/2006/08/pdd.xsd"  
    xmlns:bpelns="http://OrderingProcess"  
    xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
    location="bpel/OrderingOrganization/OrderingProcess.bpel" name="bpelns:OrderingProcess"> 
  <partnerLinks> 
    <partnerLink name="accountingLT"> 
      <partnerRole endpointReference="static"> 
        <wsa:EndpointReference xmlns:s="http://www.bpm‐test.com/AccountingService/"  
            xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 
          <wsa:Address>http://localhost:6502/AccountingService/services/AccountingService</wsa:Address> 
          <wsa:ServiceName PortName="AccountingServiceSOAP">s:AccountingService</wsa:ServiceName> 
        </wsa:EndpointReference> 
      </partnerRole> 
    </partnerLink> 
    <partnerLink name="inventoryLT1"> 
      <partnerRole endpointReference="static"> 
        <wsa:EndpointReference xmlns:s="http://www.bpm‐test.com/OrderingOrganization/"  
            xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 
          <wsa:Address>http://localhost/InventoryService/inventoryservice.asmx</wsa:Address> 
          <wsa:ServiceName PortName="InventoryServiceBinding">s:InventoryServiceBinding</wsa:ServiceName> 
        </wsa:EndpointReference> 
      </partnerRole> 
    </partnerLink> 
    <partnerLink name="orderingLink"> 
      <myRole allowedRoles="" binding="RPC‐LIT" service="orderingLinkService"/> 
    </partnerLink> 
    <partnerLink name="shippingLT"> 
      <partnerRole endpointReference="static"> 
        <wsa:EndpointReference xmlns:s="http://www.bpm‐test.com/ShipmentService/"  
            xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 
          <wsa:Address>http://appserver2:8090/Shipment/ShipmentService</wsa:Address> 
          <wsa:ServiceName PortName="ShipmentServiceSOAP">s:ShipmentService</wsa:ServiceName> 
        </wsa:EndpointReference> 
      </partnerRole> 
    </partnerLink> 
    <partnerLink name="supplierCallBackLT"> 
      <myRole allowedRoles="" binding="RPC‐LIT" service="supplierCallBackLTService"/> 
    </partnerLink> 
    <partnerLink name="supplierLT1"> 
      <partnerRole endpointReference="static"> 
        <wsa:EndpointReference xmlns:s="http://test_supplier.com/Supplier/"  
            xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"> 
          <wsa:Address>http://appserver2:8090/Supplier/SupplierService</wsa:Address> 
          <wsa:Service Name PortName="SupplierPort">s:SupplierService</wsa:ServiceName> 
        </wsa:EndpointReference> 
      </partnerRole> 
    </partnerLink> 
  </partnerLinks> 
  <references> 
    <wsdl location="file:/SupplierService.wsdl" namespace="http://test_supplier.com/Supplier/"/> 
    <wsdl location="file:/InventoryService.wsdl" namespace="http://www.bpm‐test.com/OrderingOrganization/"/> 
    <wsdl location="file:/ShipmentService.wsdl" namespace="http://www.bpm‐test.com/ShipmentService/"/> 
    <wsdl location="file:/OrderingProcess.wsdl" namespace="http://www.bpm‐test.com/OrderingOrganization/"/> 
    <wsdl location="file:/AccountingService.wsdl" namespace="http://www.bpm‐test.com/AccountingService/"/> 
  </references> 
</process> 



32 | CMU/SEI-2008-TN-005 

References 

URLs are valid as of the publication date of this document. 

[Apache 2007] 
The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/ (1999−2007) 

[Eclipse 2007] 
Eclipse. Eclipse – an open development platform. http://www.eclipse.org/ (2007) 

[IBM 2007] 
IBM, SAP. Web WS-BPEL Extension for People (BPEL4People), Version 1.0 
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_v1.pdf  (2007) 

[Intalio 2008] 
Intalio. Downloads. http://bpms.intalio.com/downloads.html (1999–2008) 

[Leymann 2006] 
Leymann, F., Roller, D., Schmidt, M.-T. “Web services and business process management.” 
IBM Systems Journal 41, 2 (2002): 199–211. 
http://www.research.ibm.com/journal/sj/412/leymann.pdf (2002) 

[Lewis 2005] 
Lewis, Grace A. & Wrage, Lutz. A Process for Context-Based Technology Evaluation 
(CMU/SEI-2005-TN-025, ADA441251). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2005. http://www.sei.cmu.edu/publications/documents/06.reports/05tn025.html 

[Lewis 2006] 
Lewis, Grace A. & Wrage, Lutz. Model Problems in Technologies for Interoperability: Web Ser-
vices (CMU/SEI-2006-TN-021, ADA454363). Software Engineering Institute, Carnegie Mellon 
University, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn021.html 

[OASIS 2005] 
Organization for the Advancement of Structured Information Standards. OASIS UDDI. 
http://www.uddi.org/ (2005) 

[OASIS 2007a] 
Organization for the Advancement of Structured Information Standards. Web Services Coordina-
tion (WS-Coordination) Version 1.1.  
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html (2007) 

[OASIS 2007b] 
Organization for the Advancement of Structured Information Standards. Web Services Atomic 
Transaction (WS-AtomicTransaction) Version 1.1 http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-
spec/wstx-wsat-1.1-spec.html (2007) 



 

 SOFTWARE ENGINEERING INSTITUTE | 33 

[OASIS 2007c] 
Organization for the Advancement of Structured Information Standards. Web Services Business 
Activity (WS-BusinessActivity) Version 1.1 
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-os/wstx-wsba-1.1-spec-errata-os.html 
(2007) 

[OASIS 2007d] 
Organization for the Advancement of Structured Information Standards. Web Services Business 
Process Execution Language Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html/ (2007) 

[OMG 2006] 
Object Management Group. Unified Modeling Language (UML), version 2.1.1 
http://www.omg.org/technology/documents/formal/uml.htm (2006) 

[OMG 2007] 
Object Management Group. Business Process Modeling Notation (BPMN) Specification. 
http://www.omg.org/cgi-bin/apps/doc?dtc/07-06-03.pdf (2007) 

[Ouyang 2006] 
Ouyang, Chun, Dumas, Marlon, ter Hofstede, Arthur H. M., & van der Aalst, Wil M. P.  
“From BPMN Process Models to BPEL Web Services,” 285–292. International Conference on 
Web Services (ICWS 2006). Salt Lake City, UT (USA), September 2006. IEEE Computer Society, 
2006. 

[SearchSOA 2005] 
SearchSOA.com. Dancing with Web services: W3C chair talks choreography. 
http://searchsoa.techtarget.com/qna/0,289202,sid26_gci1066118,00.html (2005) 

[W3C 1999] 
World Wide Web Consortium. XML Path Language Version 1.0. http://www.w3.org/TR/xpath 
(1999) 

[W3C 2003] 
World Wide Web Consortium. HTTP - Hypertext Transfer Protocol. 
http://www.w3.org/Protocols/ (2003) 

[W3C 2004] 
World Wide Web Consortium. Web Services Architecture. http://www.w3.org/TR/ws-arch/ 
(2004) 

[W3C 2005a] 
World Wide Web Consortium. Web Services Description Language (WSDL) Version 2.0 Part 1: 
Core Language. W3C Working Draft 3 August 2005. http://www.w3.org/TR/wsdl20/ (2005) 

[W3C 2005b] 
World Wide Web Consortium. Description of W3C Technology Stack Illustration. 
http://www.w3.org/Consortium/techstack-desc.html (2005) 
 



34 | CMU/SEI-2008-TN-005 

[W3C 2005c] 
World Wide Web Consortium. Web Services Web Services Choreography Description Language 
Version 1.0. W3C Candidate Recommendation 9 November 2005.  
http://www.w3.org/TR/ws-cdl-10/ (2005) 

[WfMC 2005] 
Workflow Management Coalition. Process Definition Interface―XML Process Definition Lan-
guage. http://www.wfmc.org/standards/docs.htm#XPDL_Spec_Final (2005) 

[Wikimedia 2007] 
Wikimedia Foundation. Business Process Management. 
http://en.wikipedia.org/wiki/Business_Process_Management (2007)



 

 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the 
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY 

(Leave Blank) 
2. REPORT DATE 

September 2008 
3. REPORT TYPE AND DATES 

COVERED 
Final 

4. TITLE AND SUBTITLE 
T-Check in Technologies for Interoperability: Business Process Management in a Web Ser-
vices Context  

5. FUNDING NUMBERS 
FA8721-05-C-0003 

6. AUTHOR(S) 
Fabian Hueppi, Lutz Wrage,  Grace A. Lewis 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 
CMU/SEI-2008-TN-005 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
 

11. SUPPLEMENTARY NOTES 
 

12A DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 
 

13. ABSTRACT (MAXIMUM 200 WORDS) 
In Business Process Management (BPM), many technologies are available to describe, analyze, execute, and monitor business 
processes. Composition languages are one type of BPM technology. Through the use of composition languages, business processes 
that are implemented through software and available as web services can be combined into new processes. The most popular lan-
guage in this field is the Business Process Execution Language (BPEL). BPEL allows a user to declaratively combine existing services 
within and outside an organization to implement a full business process. This technical note presents the results of applying the T-
Check approach in an initial investigation of BPEL and related technologies for the implementation of BPM. This approach involves (1) 
formulating hypotheses about the technology and (2) examining these hypotheses against specific criteria through hands-on experi-
mentation. The outcome of this two-stage approach is that the hypotheses are either fully or partially sustained or refuted. In this report, 
three hypotheses are examined: (1) business process descriptions can be exchanged between different design tools and runtime en-
gines; (2) the development effort for integration is reduced through the use of a BPM tool; and (3) business processes can be changed 
dynamically at runtime. From the T-Check investigation, the first two hypotheses are partially sustained and the last hypothesis is fully 
sustained. 

14. SUBJECT TERMS 
T-Check, Tcheck, business process management, BPM, BPEL, interoperability 

15. NUMBER OF PAGES 
44 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 

 


